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SUMMARY

The steady-state �ow and its linear stability are investigated for the isothermal two-layer �lm casting
process. Newtonian �uids are considered in this study. The continuity of traction is ensured at the
interface, and the axial velocity is assumed to be uniform across each �lm layer separately. The e�ects
of inertia, gravity, �uid parameters and processing conditions on the steady-state �ow and its stability
are studied. The results indicate that the �uid properties and the processing conditions have signi�cant
in�uence on the �ow. The �ow stability is strongly dependent on the layer layout with respect to the
take-up rolling process. The frequency of the (unstable) disturbance is insensitive to �ow and processing
parameters. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a typical �lm casting operation, the molten polymer is extruded through a slit die and is
taken up by a rotating cold roll, the ‘chill’ roll, as illustrated in Figure 1. The velocity at the
take-up point is much larger than the extrusion velocity at the die. The molten �lm is normally
stretched and drawn to reduce its thickness. The desired �lm thickness can be obtained by
choosing the appropriate draw ratio (ratio of the take-up velocity to the extrusion velocity at
the die exit). In industrial practice, the �lm casting operation is frequently limited at a certain
draw ratio by an instability known as draw resonance, which appears at high draw ratios. There
exists a critical draw ratio, beyond which stable operation is impossible and draw resonance
defect is observed. This defect consists of a periodic variation in the thickness across the
entire width of the �lm. Thus, better understanding of the molten polymer performance in the
stretching stage is important. The numerical simulation presented in this paper focuses on the
stretching stage.
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Figure 1. Schematic illustration of the two-layer �lm casting process.

Although the �lm casting process is an important industrial operation to manufacture poly-
meric �lm, experimental and theoretical studies on the process are limited and most of the
previous works focused on single-layer �ow. The pioneering work of Yeow [1] examined the
Newtonian steady-state solution for the �lm casting process and its linear stability to three-
dimensional in�nitesimal �ow disturbances. Surface tension was neglected, and so were �uid
inertia, gravitational forces, and aerodynamic drag in his study. Also, small �lm thickness vari-
ation and uniform axial stress across the �lm thickness were assumed. In the linear stability
analysis, the linearly independent solutions are obtained by solving the eigenvalue problem as
an initial-value problem. The numerical simulation methods involve the standard fourth-order
Runge–Kutta procedure. Yeow found that the critical draw ratio for instability to occur was
equal to DR =20:21. However, it is well known that commercial �lm casting can be oper-
ated at a draw ratio larger than 20.21 without encountering draw resonance. Several factors
contribute to this enhanced stability. One of the factors is the non-Newtonian behaviour of
the molten polymer. Extensive work has been done to investigate the non-Newtonian e�ects
[2–6]. Another important factor is inertia e�ect, which has been neglected in the literature.
Inertia becomes signi�cantly important in modern high-speed �lm casting, and is one of the
objects in the present study.
Co et al. [2] and Papanastasiou et al. [3] examined viscoelastic �ow of the �lm casting

process. Co et al. conducted a steady-state analysis and a linear stability analysis for three-
dimensional disturbances in the �ow that obeys a modi�ed convected Maxwell model. In the
linear stability analysis, the eigenvalue problem was treated as a two-boundary problem. They
found that a lower and an upper critical draw ratio exist for the �lm casting of the viscoelastic
�uid. The �ow was stable below a lower critical draw ratio and above an upper critical
draw ratio. Their analysis also showed that the non-Newtonian characteristic of shear thinning
enlarges the region of instability. Papanastasiou et al. studied isothermal and non-isothermal
�lm casting by means of a BKZ-type nonlinear, integral constitutive equation, which accounts
for multiple relaxation times, shear-thinning, extension-thinning or thickening and for the
shear-prehistory inside the die. The Galerkin �nite-element method was employed to solve
the governing equations. The unknown variables are approximated by a series expansion by
means of known quadratic �nite-element basis functions. The resulted system of nonlinear,
algebraic equations was solved using full Newton-iteration technique. The numerical results
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were compared with the experimental data of the casting of polypropylene. Good agreement
was obtained for the �lm thickness and the temperature pro�les. For more general references
on single-layer �lm casting, the reader may wish to consult Middleman [7], Agassant et al.
[8] and Kumar et al. [9].
The �lm casting of two- and multi-layer �ows is essentially unexplored. The theoreti-

cal analyses are very limited. Park [4] performed the �rst theoretical analysis on two-layer
�lm casting. Using simple constitutive models, Park investigated the e�ects of the interaction
between two �uids with di�erent rheological properties on the �lm thickness and stress pro-
�les. One layer was Newtonian and the second was an upper-convected-Maxwell �uid. Two
limiting cases, namely �uids with small elasticity, and �uids with large applied tension at the
take-up point, were studied. In the case of the two-layer �ow with small elasticity, the �lm
thickness and velocity pro�le were found to be similar to those for a Newtonian single-layer
�lm. In the case of a large applied tension at the take-up point, the velocity was shown
to increase linearly with axial position. It was found that the Maxwell layer dictated the
mechanics of the �ow, even when its �ow rate and shear viscosity were much smaller than
those of the Newtonian layer. All results were obtained based on an asymptotic analysis, in
which a small parameter � de�ned as the ratio of the two characteristic length scales across
and along the �lm direction was applied. At the leading order in �, the axial velocity along the
direction of drawing (see Figure 1), is dependent on x only. Consequently, the axial velocities
of the two layers are found to be uniform by employing the condition of the continuity of the
axial velocity at the interface. Co et al. [5, 6] adopted a similar assumption and studied the
multi-layer �lm casting of modi�ed Giesekus �uids. Assuming the axial velocity is uniform
across the whole �lm thickness, Co et al. investigated the e�ects of the rheological properties
of each layer and draw ratio on the steady-state �ow [5] and the instability [6]. In the stabil-
ity analysis, the eigenvalue problem was treated as a two-boundary problem. The numerical
simulation method is similar to the shooting method used by Yeow [1] in his linear stability
analysis of single-layer �lm casting. The results indicate that the layer with a much larger
elongational viscosity dominates the overall �ow behaviour, even if its thickness fraction is
small. The critical draw ratios for two-layer �lms of various thickness fractions are bounded
by those for single-layer �lms of the two �uids. Extensional-thickening has a stabilizing e�ect,
whereas shear-thinning and extensional-thinning have destabilizing e�ects.
The interaction of the �uids in multi-layer �ow is complicated, and cannot be ascertained

without some simplifying assumptions. All the previous studies on �lm casting, either single-
or multi-layer �ow, assume that the �ow is predominantly elongational, i.e. the velocity gra-
dient is linear along the direction of the �ow, resulting in a dominant axial velocity that is
uniform across the thickness. Under this assumption, the boundary conditions at the interface
between two layers, namely the continuity of the axial velocity and the traction, cannot be
simultaneously accommodated. Thus either the velocity or the traction can be continuous
across the interface. However, the imposition of a continuous velocity vector across the in-
terface is erroneous for three major reasons. First, the continuity of the velocity results in the
same axial velocity component across the entire �lm, regardless of the viscosity ratio of the
two layers. Second, in the real two-layer �lm casting process, and unlike single-layer �lm
�ow, there is bound to be a certain amount of shearing that increases with the viscosity ratio.
In this case, the axial velocity cannot be (even approximately) uniform across the entire �lm.
In fact, in the limit of zero or in�nite viscosity ratio, one of the layers is e�ectively a solid,
resulting in the formation of a boundary layer. Third, there may be a considerable slip at the
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interface. Consider, for instance, the case where the �uid in contact with the chill roll is the
less viscous layer. Since the �ow in this layer is predominantly elongational, it may fail to
fully entrain the second layer, resulting in slip.
In the present study, the continuity of traction is ensured at the interface, and the axial

velocity is assumed to be uniform across each �lm layer separately. Generally, the velocities
in the two layers are not the same. It is easy to anticipate that the �ow of the two-layer
�lm will be di�erent from the �ow of a single-layer �lm. The di�erence becomes greater if
the rheological properties of the two layers are more di�erent from one another. The major
objective of this study is to investigate how the mechanics of the two-layer �lm casting �ow
and its stability are a�ected by the properties of each layer. Inertia and gravity e�ects, which
were neglected in the previous works, are also examined. The study focuses on stability
analysis and steady-state two-layer Newtonian �lm casting. The in�uence of inertia, �uid
properties such as viscosity ratio and density ratio, as well as processing conditions such as
velocity ratio and thickness ratio, on the critical draw ratio will be investigated. Also, the
e�ects of inertia, gravity, �uid properties as well as processing conditions, on the steady-state
�ow will be examined.

2. FORMULATION OF GOVERNING EQUATIONS

In this section, the general formulation is discussed for two-layer �lm casting as depicted in
Figure 1. In the �lm casting process, the width of the �lm is very large compared with its
thickness and often much larger than the distance between the die and the chill roll (air gap);
the �lm contraction in the width direction (neck-in) can hence be neglected, and the �ow can
be considered as two-dimensional. The die swell, i.e. the phenomenon of the �lm thickness
increasing after being extruded from the die, is also ignored, considering the variation of the
�lm thickness is small. Although the �lm is air cooled, the �ow is assumed to be isothermal
since most of cooling happens at the take-up point.
Consider the two-layer �lm �ow, Newtonian and incompressible �uid, of layer a and layer

b with di�erent densities �a and �b, and viscosities �a and �b, respectively. The velocity is
assumed to be uniform across each layer separately, so that the velocities of the two layers, ua

and ub, are functions only of the streamwise position x and time t. Under these assumptions
and in the presence of inertia and gravity forces, the conservations of mass and momentum
reduce, respectively, to

ui
; x + vi; y = 0 (1)

�i(ui
; t + uiui

; x) = �i
xx; x + �i

xy; y + �ig (2)

where i refers to layer a or b, and a subscript after a comma denotes partial di�erentia-
tion. Here �xx and �xy are the normal and shear stress, respectively, g is the gravitational
acceleration, and t is the time.
The boundary conditions are prescribed as follow. At the die exit and the chill roll, the

velocities in the draw direction are given as

ua(t; x=0)= ua0; ub(t; x=0)= ub0; ua(t; x=L)= uaL (3)
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where the air gap length, L, is the length from the die exit to the chill roll. The �lm thickness
of each layer at x=0 is given as

�a(t; x=0)= �a0; �b(t; x=0)= �b0 (4)

where �a and �b are the �lm thickness of layer a and layer b, respectively. The tractions of
the two layers, ta and tb, are held equal at the interface:

ta(t; y= hf )= tb(t; y= hf ) (5)

where hf is the interface height.
Noting that the molten polymer has a high viscosity and the �lm thickness varies slowly,

surface tension and air drag are assumed to be negligible, leading to the following dynamic
conditions on the free surfaces:

ta(t; y= ha)=0; tb(t; y= hb)=0 (6)

where ha and hb are the two free surface heights. The �lm thickness of layer a and layer b
are �a and �b, respectively. Thus

�a = hf − ha; �b = hb − hf (7)

If the momentum equation in each layer is integrated across the layer, and Equations (5)–(7)
are used, then the following equation for the velocity is obtained.

(�a�a + �b�bR�)ua; t + (�
a�a + �b�bR2�)u

aua; x + �b�bR�(ub0 − R�ua0)u
a
; x

=4�a(�a + �b)ua; xx + 4�
a(�a; x + �b; x)u

a
; x + (�

a�a + �b�b)g (8)

where R� denotes the viscosity ratio of layer a to layer b. Note here that condition (5),
together with the fact that the normal components of the interface satisfy ny�nx, lead to

�aua; x=�bub; x (9)

Combining the kinematic condition and the continuity equation at the free surface gives

�a; t + (u
a�a); x =0 (10)

�b; t + (u
b�b); x =0 (11)

It is convenient to cast the problem in dimensionless form. Thus, L will be taken as the
reference length, ua0 the reference velocity, and �a0 the reference thickness. The dimensionless
variables of relevance to the problem are then de�ned as follows

X =
x
L
; T =

ua0
L
t; U i=

ui

ua0
; �i=

�i

�a0
(12)

In this case, seven parameters emerge in the problem, namely the draw ratio, DR, the thickness
ratio, R�, the velocity ratio, Ru, the density ratio R�, the viscosity ratio R�, the Froude number
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Fr, as well as the Reynolds number, Re, which are introduced as

R� =
�b0
�a0

; Ru=
ub0
ua0

; R�=
�b

�a
; R�=

�a

�b

DR =
uaL
ua0

; Fr=
ua

2

0

gL
; Re=

�aua0L
�a

In dimensionless form, Equations (8)–(11) are written as

Re�(�a + R�R��b)U a
; T + (�

a + R�R2��
b)U aU a

; X + R�R�(Ru − R�)�bU a
; X �

=4(�a +�b)U a
; XX + 4(�

a
; X +�

b
; X )U

a
; X +

Re
Fr
(�a + R��b) (13)

�a
; T + (�

aU a); X = 0 (14)

�b
; T + (�

bU b); X = 0 (15)

U b = R�U a − R� + Ru (16)

The boundary conditions become

�a(T; X =0) = 1; �b(T; X =0)=R� (17)

U a(T; X =0) = 1; U a(T; X =1)=DR (18)

3. STEADY TWO-LAYER FLOW

In this section, the steady �ow is examined. The solution procedure is �rst discussed, and the
in�uence of various �ow parameters is then investigated on the steady-state solution.

3.1. Solution procedure

The steady-state �ow is a problem of the two-point boundary-value type, which is governed
by a set of ordinary di�erential equations (ODEs), subject to constraints at the endpoints of
the interval X ∈ [0; 1]. The problem is solved based on the IMSL (International Mathematical
and Statistical Libraries) FORTRAN numerical library sub-routine DBVPFD, which solves a
system of di�erential equations with boundary conditions at two points, using a variable order,
variable step size �nite-di�erence method with deferred corrections. The basic discretization
is the trapezoidal rule over a non-uniform mesh. The mesh is chosen adaptively, to make the
local error approximately the same size everywhere. The sub-routine keeps the global error
estimates smaller than the user-speci�ed tolerance. A step size (�x) less than 0.01 was used
to maintain a tolerance of 10−7.
For steady �ow, the layer thickness of each layer can be expressed in terms of the velocity

of the layer from Equations (14) and (15). Thus, upon using Equation (16), one obtains

�as =
1

U as ; �bs =
R�Ru

R�U as − R� + Ru
(19)
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where the superscripts, as and bs, denote steady-state variables of layer a and layer b,
respectively.
In this case, the solution process reduces to the integration of the following equation for

U as(X )

Re�(�as + R�R2��
bs)U asU as

; X + R�R�(Ru − R�)�bsU as
; X �

=4(�as + �bs)U as
; XX + 4(�

as
; X +�

bs
; X )U

as
; X +

Re
Fr
(�as + R��bs) (20)

which must be solved subject to the conditions:

U as(X =0)=1; U as(X =1)=DR (21)

Note that given the nonlinear nature of the problem, a Newton’s iteration method with step
control is used for the solution.

3.2. Discussion and results

In this section, the formulation and the numerical solution are applied to the two-layer �lm
casting �ow as schematically illustrated in Figure 1. The velocity pro�les, the �lm thickness
distributions and the axial forces along the �lm length as well as the draw forces at the take-
up point for each layer will be determined. The in�uence of inertia and gravity, the properties
of the �uid (viscosity and density ratios), and the processing condition (draw ratio), on the
�ow are investigated. All the results are given in terms of dimensionless quantities.

3.2.1. In�uence of inertia. The in�uence of inertia on the two-layer �lm casting �ow is inves-
tigated by varying the Reynolds number over the range Re∈ [0; 2] while the other parameters
of the �ow are �xed. In this case, the draw ratio, DR, the viscosity ratio, R�, and the density
ratio, R�, are set equal to 12; 2 and 0.4, respectively. The �lm thickness and velocity ratios
at the die exit (X =0), R� and Ru, as well as the Froude number, Fr, are all set equal to 1.
Since the e�ect of gravity on the single layer steady-state �ow is opposite to that of inertia
[10], in order to highlight the in�uence of inertia, the e�ect of gravity is chose su�ciently
small, Fr=1. This is based on the fact (obtained by extensional calculations) that, under
the �xed values of the other parameters, the �ow response to Fr=1 is almost the same as
Fr→∞ (also see Figure 10), which means the gravity e�ect is negligible. The �ow response
is depicted in Figures 2–4, where the two-layer velocity distributions, U as(X ) and U bs(X ),
the thickness, �as(X ) and �bs(X ), and the axial forces, Fas(X ) and Fbs(X ), in each layer are
plotted against X . The draw forces at the take-up point, Fas(X =1) and Fbs(X =1), are also
plotted vs Re in Figure 4.
The results show that the velocity increases monotonically with X in each layer, at a

rate that is relatively slower (faster) near the die exit (take-up point) as Re increases. The
velocity of each layer at the take-up point is independent of inertia. While this observation
is of course expected for layer a because of boundary condition (18), it is less obvious
regarding layer b. However, this is also con�rmed from relation (16), which shows that
U bs(X =1)=R�DR − R� + Ru is indeed independent of Re.
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Figure 2. In�uence of inertia on the velocities, U as(X ) and U bs(X ), for Re∈ [0; 2],
DR =12, R�=2, R�=0:4, R�=Ru=Fr=1.

It is important to also observe that the velocity distribution along each layer deviates from
the exponential behaviour that is typical of creeping �ow of single-layer �lms [1, 7, 10]. In
the absence of inertia, the following analytical equation is obtained for U as:

(U as)
R�

R�Ru

(
U as +

Ru

R�
− 1

)
=

Ru

R�
e
X ln

⎡
⎢⎣R�

Ru
D

R�

R�Ru
R

(
DR+

Ru
R�

−1
)⎤

⎥⎦
(22)

Equation (22) is obtained by setting Re=0, substituting Equation (19) into Equation (20),
integrating the resulting equation with respect to X from 0 to 1, and applying the boundary
condition (21). Clearly, Equation (22) indicates that exponential behaviour is never encoun-
tered for two-layer �lms, even at zero Reynolds number, except when the ratio Ru=R�=1. In
this case, U as =DX

R and U bs =R�DX
R . The corresponding thickness in each layer in this case

is given by �as =D−X
R and �bs =R�D−X

R . This is an interesting result as it shows that, in the
absence of inertia, as long as the velocity ratio is equal to the viscosity ratio at the die exit,
the �ow velocity and �lm thickness in layer a are exactly the same as those for a single-layer
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Figure 3. In�uence of inertia on the �lm thickness, �as(X ) and �bs(X ), for Re∈ [0; 2],
DR =12, R�=2, R�=0:4, R�=Ru=Fr=1.

�lm, and the velocity and thickness in layer b are larger by a factor equal to the viscosity
ratio and thickness ratio at the die exit, respectively. More generally, in the presence of iner-
tia, although the velocity and thickness of each layer at the take-up point are independent of
inertia, the overall velocity and thickness deviate from exponential behaviour as Re increases,
re�ecting an intensi�cation of the nonlinear character of the �ow. It should be pointed out
that the velocity pro�le and the �lm thickness distribution along the X direction coincide with
those of the single-layer �lm casting [10], if the �ow parameters in the two-layer problem
are chose such that R�=R�=Ru=1. In fact, in this case, U s =DX

R and �
s =D−X

R , which are
identical to References [7, 10] for single-layer �lm casting.
Consider now the axial force distribution. Recall that this is the only non-zero force compo-

nent, and is expected to be dominant in practice. In this problem, a suitable force scale is taken
as �a�a0u

a
0=L, and the dimensionless axial forces in layers a and b become Fas(X )=4U as

X �
as

and Fbs(X )=4U as
X �

bs, respectively. It is observed from Figure 4 that inertia has a signi�cant
e�ect on the axial forces. The magnitude of the axial force in each layer decreases slowly
near the die exit, and increases sharply near the take-up point, as Re increases. The variation
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Figure 4. In�uence of inertia on the draw forces, for Re∈ [0; 2], DR =12, R�=2,
R�=0:4, R�=Ru=Fr=1. The �gure shows the axial forces, Fas(X ) and Fbs(X ),
along the draw direction and the draw forces at the take up point (X =1), Fas(X =1)

and Fbs(X =1), against the Reynolds number.
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of the force is not always monotonic with respect to X . Indeed, for creeping �ow (Re=0),
Fas(X ) increases with X , while Fbs(X ) decreases with X , but both tend to an asymptotic
level near the take-up point. In fact, in the absence of inertia, Equation (13) can be written
as (U as

X �
as+U as

X �
bs)X =0, which indicates that the sum of the two forces is unchanged along

the �lm direction. Note that the force in a single-layer �lm is constant everywhere [7]. For
small but non-zero Re, the force in layer a increases monotonically with X , at a rate that
increases with Re. The force in layer b exhibits a minimum that weakens with Re. For Re¿1,
the axial forces of both layers increase monotonically with X , relatively slowly near the die
exit, and sharply near the take-up point.
It is particularly important to examine the in�uence of inertia on the force in each layer

at the take-up point, and these are also shown in Figure 4. Unlike the velocity and the �lm
thickness, the draw forces at the take-up point depend signi�cantly on inertia, and increase
almost linearly with Re for both layers. This suggests that in practice, �lms with higher inertia
require more draw force to achieve the same draw ratio and �lm thickness.

3.2.2. In�uence of viscosity ratio. The e�ect of viscosity on the velocities, the �lm thickness
and the axial forces is explored by examining the two-layer �lm casting �ow for di�er-
ent values of the viscosity ratio, R� ∈ [1; 5]. The remaining parameters are �xed at DR =12,
Fr=Re=1, R�=0:4, R�=Ru=1. The �ow response is depicted in Figures 5–7.
It is observed that the velocity in each layer increases monotonically with X , regardless

of R�, but the elongation rate depends strongly on R� and is di�erent for each layer. As R�

increases, the overall velocity decreases in layer a and increases in layer b, which of course
suggests that the �ow in layer a weakens as the layer becomes relatively more viscous,
leaving layer b to �ow at a faster rate (see Figure 5). It is expected that as R� increase
further, the �ow activity in layer a becomes increasingly limited to the region near the take-
up point, with the layer behaving more like a solid almost everywhere except at the tip where
considerable stretching occurs. Simultaneously, the draw ratio, Db

R, in layer b increases with
R�. This suggests that, in practice, the draw ratio in layer b must be increased with increasing
viscosity ratio to make the casting process achievable. However, this makes the process more
vulnerable to instability. The dependence of Db

R on the �ow parameters is plotted in Figure 5,
but can be inferred from Equation (16), which, in the present case, reduces to

Db
R =R�DR − R� + 1 (23)

Equation (23) indicates that the draw ratio for layer b, Db
R, is independent of density ratio,

R�, and equals to the draw ratio for layer a, DR, at R�=1. This is con�rmed in Figure 5.
The overall thickness of layer a increases with R�, while the overall thickness of layer b

decreases (Figure 6). Although the thickness of layer b at the take-up point is independent of
inertia (Figure 3), it depends strongly on R�. Figure 6 displays the dependence of �bs(X =1)
on the viscosity ratio for various values of the draw ratio. The results show that the thickness
decreases with both parameters, �bs(X =1)≈ 1=DRR� for the current remaining parameters.
The force distributions in each layer (Figure 7) show that the in�uence of the viscosity

ratio is not always uniform. While the force in layer b decreases everywhere with viscosity
ratio, the force in layer a decreases only near the die exit, and increases sharply at the take-up
point. Two interesting observations can be made here. The �rst being the non-monotonicity
of Fbs(X ), as it displays a minimum for the higher viscosity ratios. The second observation is
that while the thickness in each layer changes little with viscosity ratio, the force in the less
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Figure 5. In�uence of viscosity ratio on the velocities, for R� ∈ [1; 5], DR =12, R�=0:4,
Re=Fr=R�=Ru=1. The �gure shows the velocity pro�les, U as(X ) and U bs(X ), along X direction,

and the velocity of layer b at the take-up point, U bs(X =1), vs the viscosity ratio R�.
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Re=Fr=R�=Ru=1. The �gure shows the �lm thickness distributions, �as(X ) and �bs(X ), along
X direction for DR =12, and the �lm thickness of layer b at the take-up point, �bs(X =1), vs

the viscosity ratio R� in log–log scale for DR ∈ [8; 24].
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Re=Fr=R�=Ru=1. The �gure shows axial force distributions, Fas(X ) and Fbs(X ),
along X direction, and the draw forces at the take-up point, Fas(X =1) and Fbs(X =1),

vs the viscosity ratio R� for di�erent Re.
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viscous layer, b (see Figure 7, for R�=5), is reduced substantially despite the strong buildup
of elongational e�ects (see Figure 6).
The forces at the take-up point in each layer are also plotted in Figure 7 against R� for

di�erent values of Re. While the draw force increases in layer a with the viscosity ratio, it
decreases in layer b. This further con�rms the stronger need for drawing of layer a, as the
force increases essentially linearly with the viscosity ratio. The slope depends on the level of
inertia, and is estimated to increase like 4:3Re. Note that the rate of decrease of the force in
layer b is essentially independent of Re.

3.2.3. In�uence of density ratio. Consider now the in�uence of the density ratio on the
�ow, which is examined by varying R� from 1 to 5. In this case DR =12, R�=2, and
Re=Fr=Ru=R�=1. The �ow response is depicted in Figures 8 and 9. Only results with
new features are reported in these �gures. It is interesting to note, at the outset, that if all
the �uid parameters are equal in layers a and b, the resulting velocity, thickness and force
distributions would be the same as those corresponding to single-layer �lm casting even when
the densities in the two layers are not equal. The velocity distributions are very similar to those
in Figure 2. The velocity in both layers decreases with the density ratio, which suggests that
increasing the density ratio enhances elongational e�ects in both layers. The �ow elongation
is strong enough to halt the decrease of the �lm thickness in layer a with X . Although the
velocity and thickness at the take-up point in each layer are not a�ected by R�, the drawing
force depends strongly on the density ratio. The force in each layer increases monotonically
with X similarly to Figure 4 (Re �= 0). Figure 9 indicates, as expected, that the density ratio
has no e�ect on the �ow in the absence of inertia. Generally, the draw force in both layers
increases linearly with R�, suggesting a larger drawing force is needed for a heavier �uid.
The slopes in layer a and b increase like 13:2Re and 6:8Re, respectively.

3.2.4. In�uence of gravity. The e�ect of gravity is examined by varying the Froude Number,
Fr. Figure 10 displays the force distributions as well as the take-up force in each layer over
the range Fr ∈ [0:01;∞), with the remaining parameters �xed at DR =12, Re=1, R�=2,
R�=0:4, R�=1 and Ru=1. Only the forces are shown because the velocity and thickness
pro�les do not exhibit any new qualitative features in comparison to Figures 2 and 3. Indeed,
it is found that both velocity and �lm thickness at the take-up point are independent of Fr.
However, the overall velocity in both layers increases due to gravity, deviating gradually
from the exponential growth to grow linearly with X as Fr decreases. Simultaneously, the
�lm thickness begins to decrease rather sharply near the die exit as gravity increases.
Gravity is found to have a dramatic e�ect on the axial forces in both layers, as depicted in

Figure 10. In the absence of gravity or for relatively large Froude number, the force in layer
a increases monotonically with X , whereas the force in layer b exhibits a weak minimum.
As the e�ect of gravity increases, the forces in both layers show a minimum that strengthens
with gravity, and is located closer to the take-up point. It is interesting to observe that while
the two layers have very di�erent �uid parameters (layer a is twice as viscous as layer b),
the overall force magnitude is the same in both layers, particularly near the die exit, where,
incidentally, the e�ect of gravity is most in�uential; there is a sharp jump in the force value
as Fr increases, re�ecting a signi�cant buildup in elongational e�ect at the die exit. However,
the work done by the force in each layer to move the �uid from the die exit to the take-up
point is una�ected by gravity; the area below the curves Fas(X ) and Fbs(X ) is unchanged as
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Figure 8. In�uence of density ratio on the two-layer �lm �ow, for R� ∈ [1; 5], DR =12, R�=2,
Re=Fr=R�=Ru=1. The �gure shows the velocity pro�les, U as(X ) and U bs(X ), the �lm thickness

distributions, �as(X ) and �bs(X ), along X direction.
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and Fbs(X ), along X direction, and the draw forces at the take-up point, Fas(X =1)
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Figure 11. In�uence of draw ratio on the velocities, for DR ∈ [5; 30], R�=2, R�=0:4,
Re=Fr=R�=Ru=1. The �gure shows the velocity pro�les, U as(X ) and U bs(X ), along X direction,

and the velocities at the take up point, U as(X =1) and U bs(X =1), against draw ratio DR.

Fr varies. This is easily con�rmed from the expression of the work, W as and W bs, in layer a
and b, respectively, which can be obtained by integrating the axial forces Fas(X ) and Fbs(X )
with respect X from 0 to 1, making use of Equations (19) and (21). The expressions for W as

and W bs are given in closed form, namely

W as = 4 ln(DR) and W bs =
4RuR�

R�
ln

(
R�

Ru
DR − R�

Ru
+ 1

)
(24)

which clearly shows the work done in each layer is independent of gravity.
The draw force at the take-up point decreases dramatically with gravity. The �gure shows

that both Fas(X =1) and Fbs(X =1) increase sharply with Fr but tend to level o� as Fr goes
to in�nity. This indicates that, at the take-up point, the draw force in each layer required
to achieve the same draw ratio becomes smaller due to the increasing e�ect of gravity. The
decrease in draw force at the take-up point, and the increase in the force at the die exit, as
gravity e�ect increases, is now not di�cult to understand in the light of expressions (24).
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Figure 12. In�uence of draw ratio on the �lm thickness, for DR ∈ [5; 30], R�=2,
R�=0:4, Re=Fr=R�=Ru=1. The �gure shows the �lm thickness distributions,
�as(X ) and �bs(X ), along X direction, and the �lm thickness at the take up point,

�as(X =1) and �bs(X =1), against draw ratio DR.

3.2.5. In�uence of draw ratio. So far, the study has focused on the in�uence of the �uid
properties on the two-layer �lm �ow. In the �lm casting process, the important parameters,
which describe the system, are the length from the die exit to the chill roll (air gap), L, and
the draw ratio, DR, which is the ratio of the take-up velocity at the chill roll to the extrusion
velocity at the die exit. The e�ect of L has already been examined through the in�uence of
the Reynolds number. For incompressible �uids, DR is equal to the ratio of the thickness of
the �lm leaving the die to the thickness of the �lm at the chill roll. To examine the e�ect
of the draw ratio, consider the velocity, the �lm thickness and axial forces in each layer for
draw ratios in the range from 5 to 30. The velocities, the �lm thickness and the draw forces
at the take-up point are also examined against the draw ratio for di�erent levels of inertia.
In this case, the viscosity ratio and density ratio are set equal to 2 and 0.4, respectively; the
remaining parameters are set equal to 1. The results are shown in Figures 11–13.
Overall, the velocity, �lm thickness and axial force distributions are sensitive to DR, but the

in�uence of the draw ratio is strongest near the take-up point. The velocity and draw force
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Figure 13. In�uence of draw ratio on the axial forces and draw forces, for DR ∈ [5; 30],
R�=2, R�=0:4, Re=Fr=R�=Ru=1. The �gure shows the axial force distributions,
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increase with draw ratio, while the �lm thickness decreases. The behaviour is monotonic
against DR, except for the force in layer b, which exhibits a weak minimum (see Figure 13).
The velocity at the take-up point in layer b follows from Equation (16), which in this case
gives Db

R =2DR − 1 (see also Figure 11). The �lm thickness at the take-up point decreases
with the draw ratio in both layers (Figure 12), and is equal to 1=DR in layer a, and 1=(2DR−1)
in layer b. The increase in axial forces at the take-up point is further re�ected in Figure 13,
which depicts the dependence of Fas(X =1) and Fbs(X =1) on DR for di�erent Reynolds
numbers. The �gure shows that the draw forces in both layers increases with DR. When
inertia is negligible, the behaviour is essentially logarithmic. The increase becomes essentially
linear with DR in the presence of strong inertia.

4. LINEAR STABILITY ANALYSIS

In this section, linear stability analysis is discussed. The solution procedure for the nonlinear
problem is given in detail. The e�ects of the �ow parameters, inertia, viscosity ratio, density
ratio and thickness ratio, are examined on the draw resonance for an in�nitesimal disturbance.

4.1. The eigenvalue problem

In the stability analysis, gravity e�ect is neglected because the term with Fr brings extortionate
complexity of handling the mathematics in analysis; additionally, for single-layer �lm casting,
the e�ects of inertia and gravity on linear stability analysis are very similar, both stabilize the
process [11], although inertia tends to be the more e�ective stabilizing force [10]. The stability
of the two-layer �lm casting process is investigated by introducing an in�nitesimal one-
dimensional disturbance to the �eld equations. Perturbation variables are introduced in the form

�a(X; T ) =�as(X ) + ’(X )e�T

�b(X; T ) =�bs(X ) +  (X )e�T

U a(X; T ) =U as(X ) + �(X )e�T (25)

where ’(X ),  (X ) and �(X ) are complex perturbation amplitudes, � is a dimensionless growth
(or decay) rate of the perturbation variables. Upon substituting for the dependent variables
from Equation (25), Equations (13)–(15) become

Re[��(�as + R�R��bs) + (’+  R�R2�)U
asU as

; X + (�
as + R�R2��

bs)

×(�U as
; X +U as�;X ) + R�R�(Ru − R�)( U as

; X +�
bs�;X )]

=4[(’;X +  ;X )U as
; X + (’+  )U as

; XX + �;XX (�as + �bs) + �;X (�as; X +�
bs
; X )] (26)

�’+ ’;XU as + ’U as
; X + �;X�as + ��as; X = 0 (27)

� + R�(�;X�bs + ��bs; X ) +  ;X (Ru − R�) + R�(U as
; X  +U as ;X ) = 0 (28)
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where all nonlinear terms in the disturbance quantities are neglected because the disturbances
are assumed to be in�nitesimally small. Since the steady-state solution is not available an-
alytically, then the eigenvalue Equations (26)–(28), and the steady-state Equations (19) and
(20) are solved simultaneously.
The di�erential Equations (26)–(28) lead to an eigenvalue problem, in which the growth

(decay) rate parameter � is complex, �= �R + i�I. The real part, �R, denotes the growth
(decay) rate of the disturbance, and the imaginary part, �I, is the frequency of draw resonance.
For �R¡0, the disturbance decays exponentially with time, and the process is stable. For
�R¿0, the disturbance grows exponentially with time, and the process is unstable. Since only
the critical conditions for the onset of instability are sought, then one sets neutral stability
conditions �R =0 and DR =DRC in the analysis. Here, DRC is the critical draw ratio at which
the process becomes unstable. For neutral stability, there are eight unknowns, �I; ’;  ; � and
DRC, from the eigenvalue problem, in addition to the unknown steady-state velocity, U as.
Recall that �as, �bs and U bs are all given explicitly in terms of U as.
To perform the linear stability analysis, two more equations are needed, in addition to

Equations (19), (20), (26)–(28), namely

dDRC
dX

= 0 (29)

d�I
dX

= 0 (30)

In view of the facts that the critical draw ratio, DRC, and the frequency of draw resonance,
�I, are constant within the air gap, Equations (29) and (30) are used to complete the system
of equations for the stability analysis. By considering the critical draw ratio, DRC, and the
frequency of draw resonance, �I, to be variables, the eigenvalue problem is now cast as a
two-point boundary value problem, upon setting �R =0. In this case, the relevant boundary
conditions at criticality are

’(T; X =0)= 0;  (T; X =0)=0; �(T; X =0)=0

�(T; X =1)= 0; U as(X =0)=1; U as(X =1)=DRC
(31)

The solution procedure is now exactly the same as that for the steady-state problem described
above.

4.2. Discussion and results

In this section, the linear stability analysis is applied to determine the critical draw ratio for
two-layer �lm casting. The in�uence of inertia and the properties of the �uid (viscosity ratio
and density ratio), as well as the process condition (�lm thickness ratio), on the critical draw
ratio, DRC, and frequency of draw resonance, �I, are investigated.

4.2.1. In�uence of viscosity ratio. The e�ect of viscosity on the critical draw ratio, DRC, and
frequency of draw resonance, �I, is explored by examining the two-layer �lm casting �ow at
di�erent viscosity ratios, R� ∈ [0:95; 2:0]. The remaining �ow parameters are �xed at R�=0:4,
and R�=Ru=1:0. The relationship between the critical draw ratio and viscosity ratio as well
as between the frequency and viscosity ratio are depicted in Figure 14 for Re∈ [0; 0:05]. It is
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Figure 14. In�uence of viscosity ratio on the critical draw ratio and frequency of draw resonance, DRC
and �I, for Re∈ [0; 0:05], R�=Ru=1, R�=0:4.

observed from Figure 14 that viscosity ratio has a signi�cant in�uence on the critical draw
ratio, for any Reynolds number. Typically, the critical draw ratio decreases and reaches a
minimum, then increases with R�. Thus, �ows of �uids with small and large viscosity ratios
tend to be relatively stable. There is a non-symmetry with respect to the minimum; the critical
draw ratio drops sharply for small R�, indicating that the �ow is particularly stable at small
viscosity ratio. The minimum critical draw ratio occurs in the region R� ∈ [1:5; 1:6] for any
Re. In the absence of inertia, the critical draw ratio for a single-layer �lm is recovered [1, 10]
(DRC =20:2 for R�=1). It is interesting to note that for R� smaller than 1, the two-layer
critical draw ratio is always larger than that for single-layer �lm. Thus, the two-layer �lm
casting process with R�¡1 is always more stable than the process of single-layer �lms. For
R�¿1, the situation becomes more complicated. In this case, the two-layer �lm casting process
is less stable than that of the single layer only for R� slightly larger than one (1¡R�¡1:6).
In sum, the marginal stability curves in Figure 14 indicate that the stability of the two-layer
�lm casting depends strongly on the layer layout with respect to the take-up rolling process.
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The draw resonance frequency corresponding to the onset of instability is also depicted in
Figure 14. The curves indicate a monotonic increase of �I with viscosity ratio. The increase
is generally linear at a rate that is independent of the Reynolds number, but tends to be slow
near R�=1. The curves also re�ect a linear increase of the frequency with the Reynolds
number, for any viscosity ratio. This is in contrast to the more rapid increase of the critical
draw ratio with Re.

4.2.2. In�uence of density ratio. As in the steady-state analysis, the e�ect of density ratio on
the stability is also investigated. In this case, the density ratio, R�, is varied from 0.01 to 1.0.
Other parameters of the �ow are taken as R�=1:5, and R�=Ru=1:0. The in�uences of the
density ratio on the critical draw ratio and frequency are plotted in Figure 15 for Re∈ [0; 0:05].
The �gure shows, as expected, that the critical draw ratio and frequency are independent of
density ratio when inertia is negligible. When the Reynolds number is di�erent from zero, the
critical draw ratio and frequency monotonically increase with the density ratio. The neutral
stability and frequency curves display essentially a linear increase with R�, at a rate that
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Figure 15. In�uence of density ratio on the critical draw ratio and frequency of draw resonance, DRC
and �I, for Re∈ [0; 0:05], R�=1:5, Ru=R�=1.
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increases with Re. This result indicates that, in the presence of inertia, increasing �uid density
in layer b, or decreasing �uid density in layer a makes the two-layer �lm casting process
more stable. The data in Figure 15 suggest the following dependence of the critical draw
ratio and frequency on the Re and R�:

DRC ≈ 50ReR� + 18:2; �I ≈ 0:4ReR� + 14:2 (32)

These two relations re�ect a certain universality of the in�uence of inertia and density ratio
on the stability picture.

4.2.3. In�uence of thickness ratio. The in�uence of thickness ratio on the stability of two-
layer �lm casting is investigated for Ru=1, R�=0:4, R� ∈ [0:01; 20] and Re∈ [0; 0:05], for
relatively small and large viscosity ratios. Figures 16 and 17 illustrate the stability picture
for R�=1:5 and 0.95, respectively. Recalled from Figure 14 that for R�¿1(R�¡1), the two-
layer �lm casting is less (more) stable than single-layer �lm casting. It is shown in Figure 16
(R�=1:5) that the critical draw ratio decreases monotonically with the thickness ratio, but at
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Figure 16. In�uence of the thickness ratio on the critical draw ratio and frequency of draw resonance,
DRC and �I, for Re∈ [0; 0:05], Ru=1, R�=1:5, R�=0:4.
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Figure 17. In�uence of the thickness ratio on the critical draw ratio and frequency of draw resonance,
DRC and �I, for Re∈ [0; 0:05], Ru=1, R�=1:5, R�=0:4.

a rate that varies with R�. There is a sharp drop of the critical draw ratio for lower values of
R�; but the critical draw ratio decreases slowly and tends to level o� as R� increases further.
This result indicates that the process becomes less stable when increasing the thickness of
the lower viscosity layer. On the one hand, for the very small R�, the thickness of layer a is
dominant. In this case, the critical draw ratio is close to that of single-layer �lm casting. On
the other hand, for the large enough R�, layer b is the dominantly thick layer, and the neutral
stability curve tends to level o� and converges to a value smaller than that corresponding
to single-layer �lm. In contrast, the frequency exhibits a maximum that seems to occur at
R�=1:5 regardless of the Reynolds number.
The situation in Figure 17 (R�=0:95) is more complicated and inertia is found to have a

dramatic e�ect on the neutral stability curves. Indeed, the critical draw ratio tends to increase
(decrease) with R� for small (large) Reynolds number. There seems to be a critical Reynolds
number (here Re=0:04) at which DRC is not a�ected by R�. For dominantly thick layer a, the
critical draw ratio is close to that of single-layer �ow. As the thickness of layer b dominates,
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the neutral stability curve tends to level o� and converge to a value either smaller or larger
than that of single-layer �ow.
Although the in�uence of thickness ratio on frequency is overall quantitatively insigni�cant

for both R�=1:5 and 0.95, there are important qualitative di�erences. For R�=0:95, the
frequency does not generally exhibits a maximum, except for creeping �ow. The frequency
tends to simply decrease with thickness ratio.

4.2.4. In�uence of velocity ratio. The e�ect velocity ratio is investigated by varying Ru from
0.55 to 1.2, while the remaining �ow parameters are �xed to R�=1:5, R�=0:4, R�=1 and
Re∈ [0; 0:05]. Figure 18 shows that the critical draw ratio and frequency depend strongly on
velocity ratio. It is observed that the in�uence of velocity ratio is similar to that of viscosity
ratio (compare with Figure 14). The minimum critical draw ratio is con�ned to the range
Ru ∈ [0:7; 0:8] for any Reynolds number. The process appears to be stable for relatively small
or large velocity ratio. Steady-state analysis suggests, based on Equation (16), that, for R�¿1,
the velocity in layer b is larger than that in layer a. This suggests in turn that the �ow in layer
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Figure 18. In�uence of the velocity ratio on the critical draw ratio and frequency of draw resonance,
DRC and �I, for Re∈ [0; 0:05], R�=1, R�=1:5, R�=0:4.
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b plays the dominant role in the destabilization of the process. Moreover, for large velocity
ratio (Ru¿1), increasing Ru weakens the elongational rate in layer b, therefore leading to a
more stable process as Figure 18 suggests. Note that the rate of elongation is re�ected by the
magnitude of the draw ratio in layer b, which is given from Equation (16) as

Db
R =1 +

R�(DR − 1)
Ru

(33)

Simultaneously, for small velocity ratio (Ru¡0:7), although Equation (33) shows that de-
creasing Ru enhances the rate of elongation in layer b, the thickness of layer b decreases, as
indicated by Equation (19), thus diminishing the in�uence of layer b on the stability of the
process. This in turn allows further stabilization of the process as shown in Figure 18. The
�gure indicates that the frequency at the onset of instability increases with Ru almost linearly.
It is interesting to observe that although inertia tends to enhance the process stability, it does
not seem to have any e�ect on the frequency as Ru varies.

4.2.5. In�uence of inertia. The in�uence of inertia on the critical draw ratio and frequency
is evidently important, based on the results above. This in�uence, however, may or may not
be always signi�cant in practice, depending on �ow conditions and parameters. It is also
observed that inertia e�ects need not be strong for inertia to play a determining role. In
fact, all �ow calculations reported in this study are based on Re at most in the order of 10−2,
which may very well correspond to practical conditions for �lm casting. In most polymer �lm
casting operations, the extrude velocity is in the range 0.04–0.1m/s, the air gap in the range
0.5–0.7m, the viscosity of the melt is as high as 104–105 Pa s at the ambient temperature.
In this case, the Reynolds number can be small, in the order of 10−3–10−4. However, the
viscosity of the �uid is dependent upon temperature and can be given as [12]

�=�ae−k (34)

where �a is the viscosity at ambient temperature, k is the dimensionless viscosity–temperature
coe�cient, which depends on the di�erence in temperature of �lm and ambient temperature.
The practical value of k [12] is believed to be in the range from 1 to 5. Thus a realistic value
for the Reynolds number should be in the order of 10−2.
The results reported in Figures (14)–(18) indicate that inertia has a signi�cant e�ect on

the stability of the two-layer �lm casting process. The critical draw ratio and the frequency
increase essentially linearly with Reynolds number, at a rate that depends on the �ow parame-
ters. The Reynolds number has a strong in�uence on the critical draw ratio; but the frequency
of the oscillatory disturbance only exhibits a slight increase with Re. The steady-state analysis
(see Figure 2) shows that both velocities in layer a and layer b decrease with Re. Conse-
quently, the e�ect of inertia makes the two-layer �lm casting process more stable. This result
is consistent with the predictions of Shah et al. [12] on the stability of �bre spinning. They
note that the critical draw ratio (20.2) for single-layer �lm casting is identical to that for
Newtonian isothermal spinning [13, 14], if the inertia is negligible. This follows from the
fact that, in the case of a two-dimensional disturbance, the two problems are mathematically
identical with respect to the perturbation variables. Thus, it is obvious that the in�uence of
inertia on the stability of �lm casting is consistent with that of �bre spinning.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:31–61



60 J. ZHANG, R. E. KHAYAT AND W. WANG

5. CONCLUSIONS

The steady-state �ow and stability of two-layer �lm casting are investigated in detail in this
study. The equations for two-layer �ow are derived and solved by taking into account inertia
and gravity. The analysis is also applicable to the single-layer �ow, for the special case that
the �ow parameters are the same for the two layers.
Among many variables which may a�ect the steady-state �ow and its stability, the e�ects

of inertia, gravity, viscosity ratio, density ratio and thickness ratio of the �uids as well as the
draw ratio are investigated. It is obvious to anticipate that the characteristics of the two-layer
�ow may fall between those of the single-layer �ows of each �uid. In this study, Newtonian
�uids are considered. It is not surprising to �nd that the e�ects of inertia, gravity and draw
ratio on the two-layer steady-state �ow and its stability are qualitatively the same with those
of single-layer �ow [10]. Therefore, only the in�uences of the parameters related to two-layer
character, viscosity ratio, density ratio, velocity ratio and thickness ratio, are addressed here.
The viscosity ratio is found to be the only factor among the investigated parameters to alter
the relative velocity of the two layers. It is found that if the viscosity ratio is equal to one,
the axial velocity is uniform across the two �lm layers regardless of the value of the other
parameters. The �lm thickness decreases with viscosity ratio, and is independent of density
ratio. The axial force in each layer is highly sensitive to these parameters. The draw forces
at the take-up point increase with density ratio and viscosity ratio.
The linear stability analysis shows that the critical draw ratio is strongly in�uenced by the

�uid parameters. In general, the stability of the process increases monotonically with density
ratio, while it varies non-monotonically with viscosity ratio, velocity ratio and thickness ratio.
Similar to the e�ect on the steady-state �ow, the in�uence of viscosity ratio on the �ow
stability is signi�cant compared with other parameters. The process stability depends strongly
on the layer layout; the two-layer �lm �ow is more stable than a single-layer �ow if the
viscosity in the layer next to the take-up roll, layer a, is higher than that of the other layer.
This result is of practical importance since it illustrates conditions of stability at a high draw
ratio for two-layer �lm casting. The in�uence of the thickness ratio depends on the viscosity
ratio when the layer not in contact with the chill roll, layer b, is dominantly thick. If the
thickness of layer a is relatively large, the critical draw ratio tends to that of a single-layer
�lm regardless of the viscosity ratio. In contrast to the e�ect on the critical draw ratio, the
in�uence of the examined parameters on the frequency is found to be surprisingly insigni�cant.
Although this study focuses on Newtonian �uids, its procedure and results may serve as

a basis for extending the present model to more complicated two-layer �lm casting systems,
for example non-Newtonian �uids. The steady state and the stability analyses should also be
applicable to other two-layer �ows such as two-phase �bre spinning and two-layer blown �lm
co-extrusion.
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